Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(1): 494-502, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843933

RESUMO

The rapidity of replication coupled with a high mutation rate enables HIV to evade selective pressures imposed by host immune responses. Investigating the ability of HIV to escape different selection forces has generally relied on population-level measures, such as the time to detectable escape mutations in plasma and the rate these mutations subsequently take over the virus population. Here we employed a barcoded synthetic swarm of simian immunodeficiency virus (SIV) in rhesus macaques to investigate the generation and selection of escape mutations within individual viral lineages at the Mamu-A*01-restricted Tat-SL8 epitope. We observed the persistence of more than 1,000 different barcode lineages following selection after acquiring escape mutations. Furthermore, the increased resolution into the virus population afforded by barcode analysis revealed changes in the population structure of the viral quasispecies as it adapted to immune pressure. The high frequency of emergence of escape mutations in parallel viral lineages at the Tat-SL8 epitope highlights the challenge posed by viral escape for the development of T cell-based vaccines. Importantly, the level of viral replication required for generating escape mutations in individual lineages can be directly estimated using the barcoded virus, thereby identifying the level of efficacy required for a successful vaccine to limit escape. Overall, assessing the survival of barcoded viral lineages during selection provides a direct and quantitative measure of the stringency of the underlying genetic bottleneck, making it possible to predict the ability of the virus to escape selective forces induced by host immune responses as well as during therapeutic interventions.


Assuntos
Infecções por HIV/imunologia , Evasão da Resposta Imune/genética , Taxa de Mutação , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Código de Barras de DNA Taxonômico , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macaca mulatta , Masculino , RNA Viral/genética , RNA Viral/isolamento & purificação , Seleção Genética/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/isolamento & purificação , Linfócitos T Citotóxicos/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
2.
Sci Adv ; 5(5): eaav7116, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31149634

RESUMO

Understanding HIV transmission is critical to guide the development of prophylactic interventions to prevent infection. We used a nonhuman primate (NHP) model with a synthetic swarm of sequence-tagged variants of SIVmac239 ("SIVmac239X") and scheduled necropsy during primary infection (days 3 to 14 after challenge) to study viral dynamics and host responses to the establishment and dissemination of infection following vaginal challenge. We demonstrate that local replication was initiated at multiple sites within the female genital tract (FGT), with each site having multiple viral variants. Local replication and spread in the FGT preceded lymphatic dissemination. Innate viral restriction factors were observed but appeared to follow viral replication and were ineffective at blocking initial viral establishment and dissemination. However, major delays were observed in time to dissemination in animals and among different viral variants within the same animal. It will be important to assess how phenotypic differences affect early viral dynamics.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/fisiologia , Vagina/virologia , Replicação Viral/fisiologia , Animais , Linfócitos T CD4-Positivos/virologia , Feminino , Genitália Feminina/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Fatores de Tempo , Carga Viral
3.
Retrovirology ; 16(1): 11, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947720

RESUMO

BACKGROUND: Reverse transcription (RT) of HIV and SIV is initiated by the binding of the acceptor stem of tRNALys3 to the primer binding site (PBS) of the viral RNA genome. Previous studies have suggested that this tRNALys3 is not the only molecule capable of priming reverse transcription, and that at least one other lysyl tRNA, tRNALys5, which has an acceptor stem sequence varying from tRNALys3 by only a single transition mutation resulting in the integration of a thymine (T) at position 8 of the PBS in the viral genome, can prime reverse transcription. RESULTS: We undertook an unbiased approach, evaluating the primer binding site by deep-sequencing of HIV and SIV directly from the plasma of 15 humans and 11 macaques. We found that in humans there are low but measurable levels of viral RNA genomes harboring a PBS containing the noncanonical T at position 8 (PBS-Lys5) corresponding to the tRNAlys5 sequence and representing an average of 0.52% (range 0.07-1.6%) of the total viral population. This value is remarkably consistent with the proportion of PBS-Lys5 we identified in a cross-sectional assessment of the LANL HIV database (0.51%). In macaques chronically infected with SIVmac239, the PBS-Lys5 was also detected but at a frequency 1-log less than seen for HIV, with an average of 0.056% (range 0.01-0.09%). At this proportion, PBS-Lys5 was comparable to other transition mutations, making it impossible to determine whether the mutation observed is a result of use of tRNALys5 as an RT primer at very low levels or merely the product of in vitro cDNA synthesis/PCR error. We also identified two novel PBS sequences in HIV and SIV at low levels in vivo corresponding to tRNALys6 and tRNALys1,2, suggesting that these tRNAs may rarely also be used to prime RT. In vivo reversion of the PBS-Lys5 found in SIVmac239 was rapid and reached background levels by 30 days post-infection. CONCLUSIONS: We conclude that while alternative tRNAs can initiate reverse transcription of HIV and SIV in vivo, their overall contributions to the replicating viral population are small.


Assuntos
HIV-1/genética , RNA de Transferência/genética , Transcrição Reversa , Vírus da Imunodeficiência Símia/genética , Animais , Sítios de Ligação , Estudos Transversais , DNA Viral/genética , Feminino , Genoma Viral , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macaca/virologia , Masculino , RNA Viral/sangue , Vírus da Imunodeficiência Símia/fisiologia , Transcrição Gênica , Replicação Viral
4.
J Virol ; 90(19): 8435-53, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412591

RESUMO

UNLABELLED: Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4(+) T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel "bar-coded" challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE: Nonhuman primate research has relied on only a few infectious molecular clones for a myriad of diverse research projects, including pathogenesis, preclinical vaccine evaluations, transmission, and host-versus-pathogen interactions. With new data suggesting a selected phenotype of the virus that causes infection (i.e., the transmitted/founder virus), we sought to generate and characterize infectious molecular clones from two widely used simian immunodeficiency virus lineages (SIVmac251 and SIVsmE660). Although the exact requirements necessary to be a T/F virus are not yet fully understood, we generated cloned viruses with all the necessary characteristic of a successful T/F virus. The cloned viruses revealed typical acute and set point viral-load dynamics with pathological immune activation, lymphoid tissue damage progressing to significant immunodeficiency, and AIDS-defining clinical endpoints in some animals. These T/F clones represent a new molecular platform for studies requiring authentic T/F viruses.


Assuntos
Genótipo , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Macaca mulatta , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral
5.
AIDS ; 30(8): 1197-208, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26854806

RESUMO

OBJECTIVES: Semen composition is influenced by HIV-1 infection, yet the impact of semen components on HIV infection of primary target cells has only been studied in samples from HIV-uninfected donors. DESIGN: We compared the effect of seminal plasma (SP) from chronically HIV-infected (SP+) versus uninfected donors (SP-) on HIV-1 infection of peripheral blood mononuclear cells (PBMCs) and CD4 T cells. METHODS: Primary cells were infected with HIV-1 in the presence of SP+ or SP- and analyzed for infection level, metabolic activity, HIV receptor expression, proliferation and activation. SP+ and SP- were compared for infection-enhancing peptides, cytokines and prostaglandin E2 levels. RESULTS: SP- efficiently enhanced HIV-1 R5 infection of CD4 T cells, whereas SP+ enhancing activity was significantly reduced. RANTES (CCL5) concentrations were elevated in SP+ relative to SP-, whereas the concentrations of infectivity-enhancing peptides [semen-derived enhancer of viral infection (SEVI), SEM1, SEM2] were similar. CCR5 membrane expression levels were reduced on CD4 T cells shortly postexposure to SP+ compared with SP- and correlated to R5-tropic HIV-1 infection levels, and CCR5 ligands' concentrations in semen. SP+ and SP- displayed similar enhancing activity on PBMC infection by X4-tropic HIV-1. Addition/depletion of RANTES (regulated on activation, normal T-cell expressed and secreted) from SPs modulated their effect on PBMC infection by R5-tropic HIV-1. CONCLUSION: Semen from HIV-infected donors exhibits a significantly reduced enhancing potential on CD4 T-cell infection by R5-tropic HIV-1 when compared with semen from uninfected donors. Our data indicate that elevated seminal concentrations of RANTES in HIV-infected men can influence the ability of semen to enhance infection.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/transmissão , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Sêmen/metabolismo , Células Cultivadas , Humanos , Masculino
6.
PLoS One ; 7(11): e50408, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209736

RESUMO

A determining role has been assigned to cAMP in the signaling pathways that relieve resistance to anti-leukemia differentiation therapy. However, the underlying mechanisms have not been elucidated yet. Here, we identify cFos as a critical cAMP effector, able to regulate the re-expression and splicing of epigenetically silenced genes associated with maturation (CD44) in retinoid-resistant NB4-LR1 leukemia cells. Furthermore, using RNA interference approach, we show that cFos mediates cAMP-induced ROS generation, a critical mediator of neutrophil maturation, and in fine differentiation. This study highlights some of the mechanisms by which cAMP acts to overcome resistance, and reveals a new alternative cFos-dependent pathway which, though nonexistent in retinoid-sensitive NB4 cells, is essential to rescue the maturation program of resistant cells.


Assuntos
AMP Cíclico/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Retinoides/farmacologia , Processamento Alternativo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Primers do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Éxons , Variação Genética , Humanos , Receptores de Hialuronatos/biossíntese , Neutrófilos/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...